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Abstract The long-term goal of AI is the creation and understanding ofintelligence.
This requires a notion of intelligence that is precise enough to allow the cumulative
development of robust systems and general results. The concept ofrational agency
has long been considered a leading candidate to fulfill this role. This paper, which
updates a much earlier version (Russell, 1997), reviews thesequence of conceptual
shifts leading to a different candidate,bounded optimality, that is closer to our in-
formal conception of intelligence and reduces the gap between theory and practice.
Some promising recent developments are also described.

1 Artificial Intelligence

AI is a field whose ultimate goal has often been somewhat ill-defined and subject
to dispute. Some researchers aim to emulate human cognition, others aim at the
creation of intelligence without concern for human characteristics, and still others
aim to create useful artifacts without concern for abstractnotions of intelligence.

My own motivation for studying AI is to create and understandintelligence as a
general property of systems, rather than as a specific attribute of humans. I believe
this to be an appropriate goal for the field as a whole, and it certainly includes the
creation of useful artifacts—both as a spin-off from and a driving force for techno-
logical development. The difficulty with this “creation of intelligence” view, how-
ever, is that it presupposes that we have some productive notion of what intelligence
is. Cognitive scientists can say “Look, my model correctly predicted this experi-
mental observation of human cognition,” and artifact developers can say “Look, my
system is worth billions of euros,” but few of us are happy with papers saying “Look,
my system is intelligent.”

A definition of intelligence needs to beformal—a property of the system’s input,
structure, and output—so that it can support analysis and synthesis. The Turing test
does not meet this requirement, because it references an informal (and parochial)
human standard. A definition also needs to begeneral, rather than a list of special-
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ized faculties—planning, learning, game-playing, and so on—with a definition for
each. Defining each faculty separately presupposes that thefaculty isnecessaryfor
intelligence; moreover, the definitions are typically not composable into a general
definition for intelligence.

The notion ofrationalityas a property ofagents—entities that perceive and act—
is a plausible candidate that may provide a suitable formal definition of intelligence.
Section 2 provides background on the concept of agents. The subsequent sections,
following the development in Russell (1997), examine a sequence of definitions
of rationality from the history of AI and related disciplines, considering each as a
predicateP that might be applied to characterize systems that are intelligent:

• P1: Perfect rationality, or the capacity to generate maximally successful be-
haviour given the available information.

• P2: Calculative rationality, or the in-principle capacity to compute the perfectly
rational decision given the initially available information.

• P3: Metalevel rationality, or the capacity to select the optimal combination of
computation-sequence-plus-action, under the constraintthat the action must be
selected by the computation.

• P4: Bounded optimality, or the capacity to generate maximally successful be-
haviour given the available information and computationalresources.

For eachP, I shall consider three simple questions. First, areP-systems interest-
ing, in the sense that their behaviour is plausibly describable as intelligent? Second,
couldP-systems ever exist? Third, to what kind of research and technological de-
velopment does the study ofP-systems lead?

Of the four candidates,P4, bounded optimality, comes closest to meeting the
needs of AI research. It is more suitable thanP1 throughP3 because it is a real
problem with real and desirable solutions, and also becauseit satisfies some es-
sential intuitions about the nature of intelligence. Some important questions about
intelligence can only be formulated and answered within theframework of bounded
optimality or some relative thereof.

2 Agents

In the early decades of AI’s history, researchers tended to define intelligence with re-
spect to specific tasks and the internal processes those tasks were thought to require
in humans. Intelligence was believed to involve (among other things) the ability to
understand language, the ability to reason logically, and the ability to solve prob-
lems and construct plans to satisfy goals. At the core of suchcapabilities was a store
of knowledge. The standard conception of an AI system was as asort ofconsultant:
something that could be fed information and could then answer questions. The out-
put of answers was not thought of as anaction about which the AI system had a
choice, any more than a calculator has a choice about what numbers to display on
its screen given the sequence of keys pressed.
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The view that AI is about building intelligentagents—entities that sense their
environment and act upon it—became the mainstream approachof the field only
in the 1990s (Russell and Norvig, 1995; Dean et al, 1995), having previously been
the province of specialized workshops on “situatedness” and “embeddedness”. The
“consultant” view is a special case in which answering questions is a form of
acting—a change of viewpoint that occurred much earlier in the philosophy of lan-
guage with the development of speech act theory. Now, instead of simply giving an-
swers, a consulting agent could refuse to do so on the groundsof privacy or promise
to do so in return for some consideration. The agent view alsonaturally encompasses
the full variety of tasks and platforms—from robots and factories to game-playing
systems and financial trading systems—in a single theoretical framework.

What matters about an agent is what itdoes, not how it does it. An agent can
be defined mathematically by anagent functionthat specifies how an agent behaves
under all circumstances. More specifically, letO be the set of percepts that the agent
can observe at any instant (withO∗ being the set of observation sequences of any
length) andA be the set of possible actions the agent can carry out in the external
world (including the action of doing nothing). The agent function is a mapping
f : O∗ → A. This definition is depicted in the upper half of Figure 1.

As we will see in Section 3, rationality provides a normativeprescription for
agent functions and does not specify—although it does constrain—the process by
which the actions are selected. Rather thanassumethat a rational agent must, for
example, reason logically or calculate expected utilities, the arguments for (Nils-
son, 1991) or against (Agre and Chapman, 1987; Brooks, 1989)the inclusion of
such cognitive faculties must justify their position on thegrounds of efficacy in rep-
resenting a desirable agent function. A designer of agents has,a priori, complete
freedom in choosing the specifications, boundaries, and interconnections of subsys-
tems, as long they they compose to form a complete agent. In this way one is more
likely to avoid the “hallucination” problem that arises when the fragility of a subsys-
tem is masked by having an intelligent human providing inputto it and interpreting
its outputs.

Another important benefit of the agent view of AI is that it connects the field
directly to others that have traditionally looked on the embedded agent as a natural
topic of study, including economics, operations research,control theory, and even
evolutionary biology. These connections have facilitatedthe importation of techni-
cal ideas (Nash equilibria, Markov decision processes, andso on) into AI, where
they have taken root and flourished.

3 Perfect Rationality

So which agent functions are intelligent? Clearly, doing the right thing is more intel-
ligent that doing the wrong thing. The rightness of actions is captured by the notion
of rationality: informally, an action is rational to the extent that is consistent with
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Fig. 1 The agent receives percepts from the environment and generates a behaviour which in turn
causes the environment to generate a state history. The performance measure evaluates the state
history to arrive at the value of the agent.

the agent’s goals (or the task for which it was designed), from the point of view of
the information possessed by the agent.

Rationality is, therefore, always understood relative to the agent’s ultimate goals.
These are expressed mathematically by a performance measure U on sequences
of environment states. LetV( f ,E,U) denote the expected value according toU
obtained by an agent functionf in environment classE, where (for now) we will
assume a probability distribution over elements ofE. Then a perfectly rational agent
is defined by an agent functionfopt such that

fopt = argmaxfV( f ,E,U) (1)

This is just a fancy way of saying that the best agent does the best it can. The point is
that perfectly rational behaviour is a well-defined function of thetask environment
fixed byE andU .

Turning to the three questions listed in Section 1: Are perfectly rational agents in-
teresting things to have? Yes, certainly—if you have one handy, you prefer it to any
other agent. A perfectly rational agent is, in a sense, perfectly intelligent. Do they
exist? Alas no, except for very simple task environments, such as those in which
everybehavior is optimal (Simon, 1958). Physical mechanisms take time to per-
form computations, while real-world decisions generally correspond to intractable
problem classes; imperfection is inevitable.

Despite their lack of existence, perfectly rational agentshave, like imaginary
numbers, engendered a great deal of interesting research. For example, economists
prove nice results about economies populated by them and game-theoretic mecha-
nism designers much prefer to assume perfect rationality onthe part of each agent.
Far more important for AI, however, was the reduction from a global optimiza-
tion problem (Equation 1) to a local one: from the perfect rationality of agents
to the perfect rationality of individual actions. That is, aperfectly rational agent
is one that repeatedly picks an action that maximizes the expected utility of the
next state. This reduction involved three separate and largely unconnected results:
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the axiomatic utility theory of von Neumann and Morgenstern(1944) (which ac-
tually takes for granted the agent’s ability to express preferences between distri-
butions over immediate outcomes), Bellman’s 1957 theory ofsequential decisions,
and Koopmans’ 1972 analysis of preferences over time in the framework of multi-
attribute utility theory (Keeney and Raiffa, 1976).

While utility is central to the decision-theoretic notion of perfect rationality,
goalsare usually considered to define the task for a logic-based agent: according
to Newell (1982), such an agent is perfectly rational if eachaction is part of a plan
that will achieve one of the agent’s goals. There have been attempts to define goals
in terms of utilities, beginning with Wellman and Doyle (1991), but difficulties re-
main because goals are essentially incomplete as task specifications. They do not
specify what to do when goal achievement cannot be guaranteed, or when goals
conflict, or when several plans are available for achieving agoal, or when the agent
has achieved all its goals. It may be better to interpret goals not as primary defini-
tions of the agent’s task but as subsidiary devices for focusing computational effort
with an overall decision-theoretic context. For example, someone moving to a new
city may, after weighing many alternatives and tradeoffs under uncertainty, settle on
the goal of buying a particular apartment and thereafter focus their deliberations on
finding a plan to achieve that goal, to the exclusion of other possibilities. At the mo-
ment we do not have a good understanding of goal formation by adecision-theoretic
agent, but it is clear that such behavior cannot be analyzed within the framework of
perfect rationality.

As discussed so far, the framework does not say where the beliefs and the per-
formance measure reside—they could be in the head of the designer or of the agent
itself. If they are in the designer’s head, the designer has to do all the work to build
the agent function, anticipating all possible percept sequences. If they are in the
agent’s head, the designer can delegate the work to the agent; for example, in the
setting of reinforcement learning, it is common to equip theagent with a fixed ca-
pacity to extract a distinguished reward signal from the environment, leaving the
agent to learn the corresponding utility function on states. The designer may also
equip the agent with a prior over environments (Carnap, 1950), leaving the agent
to perform Bayesian updating as it observes the particular environment it inhab-
its. Solomonoff (1964) and Kolmogorov (1965) explored the question of universal
priors over computable environments; universality, unfortunately, leads to undecid-
ability of the learning problem. Hutter (2005) makes an ambitious attempt to define
a universal yet computable version of perfect rationality,but does not pretend to
provide the instantaneous decisions required for an actualP1-system; instead, this
work belongs in the realm ofP2-systems, or calculatively rational agents.

Perhaps the biggest open question for the theory of perfect rationality lies in its
extension from single-agent to multi-agent environments.Game theorists have pro-
posed manysolution concepts—essentially, definitions of admissible strategies—
but have not identified one that yields a unique recommendation (up to tie-breaking)
for what to do (Shoham and Leyton-Brown, 2009).
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4 Calculative Rationality

P2-section
The theory ofP1, perfect rationality, says nothing about implementation;P2, cal-

culative rationality, on the other hand, is concerned with programs for computing
the choices that perfect rationality stipulates.

To discuss calculative rationality, then, we need to discuss programs. The agent’s
decision-making system can be divided into themachine M, which is considered
fixed, and theagent program l, which the designer chooses from the spaceLM of
all programs that the machine supports. (M need not be a raw physical computer, of
course; it can be a software “virtual machine” at any level ofabstraction.) Together,
the machineM and the agent programl define an agent functionf =Agent(l ,M),
which, as noted above, is subject to evaluation. Conversely, l is animplementation
of the agent functionf onM; there may, of course, be many such implementations,
but also, crucially, there may be none (see Section 6).

It is important to understand the distinction between an agent program and the
agent function it implements. An agent program may receive as input the current
percept, but also has internal state that reflects, in some form, the previous percepts.
It outputs actions when they have been selected. From the outside, the behaviour
of the agent consists of the selected actionsinterspersed with inaction(or whatever
default actions the machine generates). Depending on how long the action selection
takes, many percepts may go by unnoticed by the program.

Calculative rationality is displayed by programs that,if executed infinitely fast,
would result in perfectly rational behaviour. That is, at timet, assuming it is not al-
ready busy computing its choice for some previous time step,the program computes
the valuefopt([o1, . . . ,ot ]).

Whereas perfect rationality is highly desirable but does not exist, calculative ra-
tionality often exists—its requirements can be fulfilled byreal programs for many
settings—but it is not necessarily a desirable property. For example, a calculatively
rational chess program will choose the “right” move, but maytake 1050 times too
long to do so.

The pursuit of calculative rationality has nonetheless been the main activity
of theoretically well-founded research in AI; the field has been filling in a table
whose dimensions are the various environment properties (deterministic or stochas-
tic, fully or partially observable, discrete or continuous, dynamic or static, single-
agent or multi-agent, known or unknown) for various classesof representational
formalisms (atomic, propositional, or relational). In thelogical tradition, planning
systems and situation-calculus theorem-provers satisfy the conditions of calcula-
tive rationality for discrete, fully observable environments; moreover, the power of
first-order logic renders the required knowledge practically expressible for a wide
range of problems. In the decision-theoretic tradition, there are calculatively rational
agents based on algorithms for solving fully or partially observable Markov deci-
sion processes, defined initially atomic by atomic formalisms (e.g., transition matri-
ces), later by propositional representations (e.g., dynamic Bayesian networks), and
now by first-order probabilistic languages Srivastava et al(2014). For continuous
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domains, stochastic optimal control theory (Kumar and Varaiya, 1986) has solved
some restricted classes of problems, while many others remain open.

In practice, neither the logical nor the decision-theoretic traditions can avoid the
intractability of the decision problems posed by the requirement of calculative ra-
tionality. One response, championed by Levesque (1986), isto rule out sources of
exponential complexity in the representations and reasoning tasks addressed, so that
calculative and perfect rationality coincide—at least, ifwe ignore the little matter
of polynomial-time computation. The accompanying research results on tractable
sublanguages are perhaps best seen as indications of where complexity may be an
issue rather than as a solution to the problem of complexity,since real-world prob-
lems usually require exponentially large representationsunder the input restrictions
stipulated for tractable inference (Doyle and Patil, 1991).

The most common response to complexity has been to use various speedup tech-
niques and approximations in the hope of getting reasonablebehaviour. AI has de-
veloped a very powerful armoury of methods for reducing the computational cost
of decision making, including heuristic evaluation functions, pruning techniques,
sampling methods, problem decomposition, hierarchical abstraction, compilation,
and the application of metalevel control. Although some of these methods can re-
tain guarantees of optimality and are effective for moderately large problems that
are well structured, it is inevitable that intelligent agents will be unable to act ratio-
nally in all circumstances. This observation has been a commonplace since the very
beginning of AI. Yet systems that select suboptimal actionsfall outside calculative
rationalityper se, and we need a better theory to understand them.

5 Metalevel Rationality

Metalevel rationality, also called Type II rationality by I. J. Good (1971), is based
on the idea of finding an optimal tradeoff between computational costs and deci-
sion quality. Although Good never made his concept of Type IIrationality very
precise—he defines it as “the maximization of expected utility taking into account
deliberation costs—it is clear that the aim was to take advantage of some sort of
metalevel architectureto implement this tradeoff. Metalevel architecture is a design
philosophy for intelligent agents that divides the agent program into two (or more)
notional parts. Theobject levelcarries out computations concerned with the appli-
cation domain—for example, projecting the results of physical actions, computing
the utility of certain states, and so on. Themetalevelis a second decision-making
process whose application domain consists of the object-level computations them-
selves and the computational objects and states that they affect. Metareasoning has
a long history in AI, going back at least to the early 1970s (see Russell and We-
fald, 1991a, for historical details). One can also view selective search methods and
pruning strategies as embodying metalevel expertise concerning the desirability of
pursuing particular object-level search operations.
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The theory ofrational metareasoningformalizes Good’s intuition that the met-
alevel can “do the right thinking.” The basic idea is that object-level computa-
tions are actions with costs (the passage of time) and benefits (improvements in
decision quality). A rational metalevel selects computations according to their ex-
pected utility. Rational metareasoning has as a precursor the theory ofinforma-
tion value(Howard, 1966)—the notion that one can calculate the decision-theoretic
value of acquiring an additional piece of information by simulating the decision
process that would be followed given each possible outcome of the information
request, thereby estimating the expected improvement in decision quality aver-
aged over those outcomes. The application to computationalprocesses, by analogy
to information-gathering, seems to have originated with Matheson (1968). In AI,
Horvitz (1987, 1989), Breese and Fehling (1990), and Russell and Wefald (1989,
1991a,b) all showed how the idea of value of computation could solve the basic
problems of real-time decision making.

Perhaps the simplest form of metareasoning occurs when the object level is
viewed by the metalevel as a black-boxanytime(Dean and Boddy, 1988) orflex-
ible (Horvitz, 1987) algorithm, i.e., an algorithm whose decision quality depends on
the amount of time allocated to computation. This dependency can be represented by
a performance profileand the metalevel simply finds the optimal tradeoff between
decision quality and the cost of time (Simon, 1955). More complex problems arise
if one wishes to build complex real-time systems from anytime components. First,
one has to ensure theinterruptibility of the composed system—that is, to ensure that
the system as a whole can respond robustly to immediate demands for output. The
solution is to interleave the execution of all the components, allocating time to each
component so that the total time for each complete iterativeimprovement cycle of
the system doubles at each iteration. In this way, we can construct a complex sys-
tem that can handle arbitrary and unexpected real-time demands just as if it knew
the exact time available in advance, with just a small (≤ 4) constant factor penalty
in speed (Russell and Zilberstein, 1991). Second, one has toallocate the available
computation optimally among the components to maximize thetotal output qual-
ity. Although this is NP-hard for the general case, it can be solved in time linear
in program size when the call graph of the components is tree-structured (Zilber-
stein and Russell, 1996). Although these results are derived in the simple context of
anytime algorithms with well-defined performance profiles,they point to the possi-
bility of more general schemes for allocation of computational resources in complex
systems.

The situation gets more interesting when the metalevel can go inside the object
level and direct its activities, rather than just switchingit on and off. The work done
with Eric Wefald looked in particular at search algorithms,in which the object-level
computations extend projections of the results of various courses of actions further
into the future. For example, in chess programs, each object-level computation ex-
pands a leaf node of the game tree and advances the clock; it isan action in the
so-calledjoint-state Markov decision process, whose state space is the Cartesian
product of the object-level state space (which includes time) and the metalevel state
space of computational states—in this case, partially generated game trees. The ac-
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tions available are to expand a leaf of the game tree or to terminate search and
make a move on the board. It is possible to derive a greedy ormyopicapproxima-
tion to the value of each possible computation and thereby tocontrol search effec-
tively. This method was implemented for two-player games, two-player games with
chance nodes, and single-agent search. In each case, the same general metareason-
ing scheme resulted in efficiency improvements of roughly anorder of magnitude
over traditional, highly-engineered algorithms (Russelland Wefald, 1991a).

An independent thread of research on metalevel control began with work by Koc-
sis and Szepesvari (2006) on the UCT algorithm, which operates in the context of
Monte Carlo tree search (MCTS) algorithms. In MCTS, each computation takes
the form of a simulation of a randomized sequence of actions leading from a leaf
of the current tree to a terminal state. UCT is a metalevel heuristic for selecting
a leaf from which to conduct the next simulation, and has contributed to dramatic
improvements in Go-playing algorithms over the last few years. It views the met-
alevel decision problem as a multi-armed bandit problem (Berry and Fristedt, 1985)
and applies an asymptotically near-optimal bandit decision rule recursively to make
a choice of which computation to do next. The application of bandit methods to
metalevel control seems quite natural, because a bandit problem involves deciding
where to do the next “experiment” to find out how good each bandit arm is. Are
bandit algorithms such as UCT approximate solutions to someparticular case of the
metalevel decision problem defined by Russell and Wefald? The answer, perhaps
surprisingly, is no. The essential difference is that, in bandit problems, every trial
involves executing a real object-level action with real costs, whereas in the metarea-
soning problem the trials aresimulationswhose cost is usuallyindependentof the
utility of the action being simulated. Hence UCT applies bandit algorithms to prob-
lems that are not bandit problems. A careful analysis (Hay etal, 2012) shows that
metalevel problems in their simplest form are isomorphic toselection problems, a
class of statistical decision problems studied since the 1950s in quality control and
other areas. Hay et al develop a rigorous mathematical framework for metalevel
problems, showing that, for some cases, hard upper bounds can be established for
the number of computations undertaken by an optimal metalevel policy, while, for
other cases, the optimal policy may (with vanishingly smallprobability) continue
computing long past the point where the cost of computation exceeds the value of
the object-level problem.

Achieving accurate metalevel control remains a difficult open problem in the
general case. Myopic strategies—considering just one computation at a time—can
fail in cases where multiple computations are required to have any chance of alter-
ing the agent’s current preferred action. Obviously, the problem of optimal selection
of computationsequencesis at least as intractable as the underlying object-level
problem. One possible approach could be to apply metalevel reinforcement learn-
ing, especially as the “reward function” for computation—that is, the improvement
in decision quality—is easily available to the metalevelpost hoc. It seems plausi-
ble that the human brain has such a capacity, since its hardware is unlikely to have
a method of deriving clever new algorithms for new classes ofdecision problems.
Indeed, there is a sense in whichalgorithms are not a necessary part of AI systems.
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Instead, one can imagine a general, adaptive process of rationally guided compu-
tation interacting with properties of the environment to produce more and more
efficient decision making.

Although rational metareasoning seems to be a useful tool incoping with com-
plexity, the concept of metalevel rationality as a formal framework for resource-
bounded agents does not seem to hold water. The reason is that, since metareason-
ing is expensive, it cannot be carried out optimally. Thus, while a metalevel-rational
agent would be highly desirable (although not quite as desirable as a perfectly ra-
tional agent), it does not usually exist. The history of object-level rationality has
repeated itself at the metalevel: perfect rationality at the metalevel is unattainable
and calculative rationality at the metalevel is useless. Therefore, a time/optimality
tradeoff has to be made for metalevel computations, as for example with the my-
opic approximation mentioned above. Within the framework of metalevel rational-
ity, however, there is no way to identify the appropriate tradeoff of time for metalevel
decision quality. Any attempt to do so via a metametalevel simply results in a con-
ceptual regress. Furthermore, it is entirely possible thatin some environments, the
most effective agent design will do no metareasoning at all,but will simply respond
to circumstances. These considerations suggest that the right approach is to step out-
side the agent, as it were; to refrain from micromanaging theindividual decisions
made by the agent. This is the approach taken in bounded optimality.

6 Bounded Optimality

The difficulties with perfect rationality and metalevel rationality arise from the im-
position of optimality constraints onactionsor computations, neither of which the
agent designer directly controls. The basic problem is thatnot all agent functions
are feasible(Russell and Subramanian, 1995) on a given machineM; the feasible
functions are those implemented by some program forM. Thus, the optimization
over functions in Equation 1 is meaningless. It may be pointed out that not all agent
functions are computable, but feasibility is in fact much stricter than computability,
because it relates the operation of a program on a formal machine model with finite
speed to the actual temporal behaviour generated by the agent.

Given this view, one is led immediately to the idea that optimal feasible behaviour
is an interesting notion, and to the idea of finding the program that generates it.P4,
bounded optimality, is exhibited by a programlopt that satisfies

lopt = argmaxl∈LM
V(Agent(l ,M),E,U) . (2)

Certainly, one would be happy to havelopt, which is as intelligent as possible given
the computational resources and structural constraints ofthe machineM. Certainly,
bounded optimal programs exist, by definition. And the research agenda appears to
be very interesting, even though it is difficult.
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In AI, the idea of bounded optimality floated around among several discus-
sion groups interested in resource-bounded rationality inthe late 1980s, particu-
larly those at Rockwell (organized by Michael Fehling) and Stanford (organized by
Michael Bratman). The term itself seems to have been originated by Horvitz (1989),
who defined it informally as “the optimization of computational utility given a set
of assumptions about expected problems and constraints on resources.”

Similar ideas also emerged in game theory, where there has been a shift from
consideration of optimal decisions in games to a consideration of optimal decision-
making programs. This leads to different results because itlimits the ability of each
agent to do unlimited simulation of the other, who is also doing unlimited simulation
of the first, and so on. Depending on the precise machine limitations chosen, it is
possible to prove, for example, that the iterated Prisoner’s Dilemma has cooperative
equilibria (Megiddo and Wigderson, 1986; Papadimitriou and Yannakakis, 1994;
Tennenholtz, 2004), which is not the case for arbitrary strategies.

Philosophy has also seen a gradual evolution in the definition of rationality. There
has been a shift from consideration ofact utilitarianism—the rationality of individ-
ual acts—torule utilitarianism, or the rationality of general policies for acting. The
requirement that policies be feasible for limited agents was discussed extensively by
Cherniak (1986) and Harman (1983). A philosophical proposal generally consistent
with the notion of bounded optimality can be found in the “Moral First Aid Man-
ual” (Dennett, 1986). Dennett explicitly discusses the idea of reaching an optimum
within the space of feasible decision procedures, using as an example the Ph.D. ad-
missions procedure of a philosophy department. He points out that the bounded
optimal admissions procedure may be somewhat messy and may have no obvious
hallmark of “optimality”—in fact, the admissions committee may continue to tin-
ker with it since bounded optimal systems may have no way to recognize their own
bounded optimality.

My work with Devika Subramanian placed the general idea of bounded opti-
mality in a formal setting and derived the first rigorous results on bounded optimal
programs (Russell and Subramanian, 1995). This required setting up completely
specified relationships among agents, programs, machines,environments, and time.
We found this to be a very valuable exercise in itself. For example, the informal no-
tions of “real-time environments” and “deadlines” ended upwith definitions rather
different than those we had initially imagined. From this foundation, a very simple
machine architecture was investigated in which the programconsists of a collec-
tion of decision procedures with fixed execution time and decision quality. In a
“stochastic deadline” environment, it turns out that the utility attained by running
several procedures in sequence until interrupted is often higher than that attain-
able by any single decision procedure. That is, it is often better first to prepare a
“quick and dirty” answer before embarking on more involved calculations in case
the latter do not finish in time. In an entirely separate line of inquiry, Livnat and
Pippenger (2006) show that, under a bound on the total numberof gates in a circuit-
based agent, the bounded optimal configuration may, for sometask environments,
involve two or more separate circuits that compete for control of the effectors and,
in essence, pursue separate goals.
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The interesting aspect of these results, beyond their valueas a demonstration of
nontrivial proofs of bounded optimality, is that they exhibit in a simple way what
I believe to be a major feature of bounded optimal agents: thefact that the pres-
sure towards optimality within a finite machine results in more complex program
structures. Intuitively, efficient decision-making in a complex environment requires
a software architecture that offers a wide variety of possible computational options,
so that in most situations the agent has at least some computations available that
provide a significant increase in decision quality.

One objection to the basic model of bounded optimality outlined above is that so-
lutions are notrobustwith respect to small variations in the environment or the ma-
chine. This in turn would lead to difficulties in analyzing complex system designs.
Theoretical computer science faced the same problem in describing the running time
of algorithms, because counting steps and describing instruction sets exactly gives
the same kind of fragile results on optimal algorithms. TheO() notation was de-
veloped to provide a way to describe complexity that is independent of machine
speeds and implementation details and that supports the cumulative development
of complexity results. The corresponding notion for agentsis asymptotic bounded
optimality (ABO) (Russell and Subramanian, 1995). As with classical complexity,
we can define both average-case and worst-case ABO, where “case” here means the
environment. For example, worst-case ABO is defined as follows:

Worst-case asymptotic bounded optimality
an agent program l is timewise (or spacewise) worst-case ABOin E on M

iff

∃k,n0 ∀l ′,n n> n0 ⇒ V∗(Agent(l ,kM),E,U,n) ≥

V∗(Agent(l ′,M),E,U,n)

where kM denotes a version of M speeded up by a factor k (or with
k times more memory) and V∗( f ,E,U,n) is the minimum value of
V( f ,E,U) for all E in E of complexity n.

In English, this means that the program is basically along the right lines if it just
needs a faster (larger) machine to have worst-case behaviour as good as that of any
other program in all environments.

Another possible objection to the idea of bounded optimality is that it simply
shifts the intractable computational burden of metalevel rationality from the agent’s
metalevel to the designer’s object level. Surely, one mightargue, the designer now
has to solve offline all the metalevel optimization problemsthat were intractable
when online. This argument is not without merit—indeed, it would be surprising if
the agent design problem turns out to be easy. There is however, a significant differ-
ence between the two problems, in that the agent designer is presumably creating
an agent for an entire class of environments, whereas the putative metalevel agent
is working in a specific environment. That this can make the problemeasierfor the
designer can be seen by considering the example of sorting algorithms. It may be
very difficult indeed to sort a list of a trillion elements, but it is relatively easy to
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design an asymptotically optimal algorithm for sorting. Infact, the difficulties of the
two tasks are unrelated. The unrelatedness would still holdfor BO as well as ABO
design, but the ABO definitions make it a good deal clearer.

It can be shown easily that worst-case ABO is a generalization of asymptotically
optimal algorithms, simply by constructing a “classical environment” in which clas-
sical algorithms operate and in which the utility of the algorithm’s behaviour is a
decreasing positive function of runtime if the output is correct and zero otherwise.
Agents in more general environments may need to trade off output quality for time,
generate multiple outputs over time, and so on. As an illustration of how ABO is
a useful abstraction, one can show that under certain restrictions one can construct
universalABO programs that are ABO for any time variation in the utility func-
tion, using the doubling construction from Russell and Zilberstein (1991). Further
directions for bounded optimality research are discussed below.

7 What Is To Be Done?

The 1997 version of this paper described two agendas for research: one agenda
extending the tradition of calculative rationality and another dealing with metarea-
soning and bounded optimality.

7.1 Improving the calculative toolbox

The traditional agenda took as its starting point the kind ofagent could be built us-
ing the components available at that time: a dynamic Bayesian network to model
a partially observable, stochastic environment; parametric learning algorithms to
improve the model; a particle filtering algorithm to keep track of the environment
state; reinforcement learning to improve the decision function given the state esti-
mate. Such an architecture “breaks” in several ways when faced with the complexity
of real-world environments (Russell, 1998):

1. Dynamic Bayesian networks are not expressive enough to handle environments
with many related objects and uncertainty about the existence and identity of
objects; a more expressive language—essentially a unification of probability and
first-order logic—is required.

2. A flat space of primitive action choices, especially when coupled with a greedy
decision function based on reinforcement learning, cannothandle environments
where the relevant time scales are much longer than the duration of a single prim-
itive action. (For example, a human lifetime involves tens of trillions of primitive
muscle activation cycles.) The agent architecture must support hierarchical rep-
resentations of behaviour, including high-level actions over long time scales.
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3. Attempting to learn a value function accurate enough to support a greedy one-
step decision procedure is unlikely to work; the decision function must support
model-based lookahead over a hierarchical action model.

On this traditional agenda, a great deal of progress has occurred. For the first item,
there are declarative (Milch et al, 2005) and procedural (Pfeffer, 2001; Goodman
et al, 2008)probabilistic programming languagesthat have the required expressive
power. For the second item, a theory of hierarchical reinforcement learning has been
developed (Sutton et al, 1999; Parr and Russell, 1998). The theory can be applied to
agent architectures defined by arbitrarypartial programs—that is, agent programs
in which the choice of action at any point may be left unspecified Andre and Russell
(2002); Marthi et al (2005). The hierarchical reinforcement learning process con-
verges in the limit to the optimal completion of the agent program, allowing the
effective learning of complex behaviours that cover relatively long time scales. For
the third item, lookahead over long time scales, a satisfactory semantics has been
defined for high-level actions, at least in the deterministic setting, enabling model-
based lookahead at multiple levels of abstraction (Marthi et al, 2008).

These are promising steps, but many problems remain unsolved. From a practical
point of view, inference algorithms for expressive probabilistic languages remain far
too slow, although this is the subject of intense study at present in many research
groups around the world. Furthermore, algorithms capable of learning new model
structures in such languages are in their infancy. The same is true for algorithms
that construct new hierarchical behaviours from more primitive actions: it seems
inevitable that intelligent systems will need high-level actions, but as yet we do not
know how to create new ones automatically. Finally, there have been few efforts at
integrating these new technologies into a single agent architecture. No doubt such
an attempt will reveal new places where our ideas break and need to be replaced
with better ones.

7.2 Optimizing computational behaviour

A pessimistic view of Equation 2 is that it requires evaluating every possible pro-
gram in order to find one that works best—hardly the most promising or original
strategy for AI research. But in fact the problem has a good deal of structure and
it is possible to prove bounded optimality results for reasonably general classes of
machines and task environments.

Modular design using a hierarchy of components is commonly seen as the only
way to build reliable complex systems. The components fulfill certain behavioural
specifications and interact in well-defined ways. To producea composite bounded-
optimal design, the optimization problem involves allocating execution time to com-
ponents (Zilberstein and Russell, 1996) or arranging the order of execution of the
components (Russell and Subramanian, 1995) to maximize overall performance. As
illustrated earlier in the discussion of universal ABO algorithms, the techniques for
optimizing temporal behaviour are largely orthogonal to the contentof the system
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components, which can therefore be optimized separately. Consider, for example,
a composite system that uses an anytime inference algorithmover a Bayesian net-
work as one of its components. If a learning algorithm improves the accuracy of
the Bayesian network, the performance profile of the inference component will im-
prove, which will result in a reallocation of execution timethat is guaranteed to
improve overall system performance. Thus, techniques suchas the doubling con-
struction and the time allocation algorithm of Zilbersteinand Russell (1996) can be
seen as domain-independent tools for agent design. They enable bounded optimality
results that do not depend on the specific temporal aspects ofthe environment class.
As a simple example, we might prove that a certain chess program design is ABO
for all time controls ranging from blitz to full tournament play.

The results obtained so far for optimal time allocation haveassumed a static,
offline optimization process with predictable component performance profiles and
fixed connections among components. One can imagine far moresubtle designs in
which individual components must deal with unexpectedly slow or fast progress in
computations and with changing needs for information from other components. This
might involve exchanging computational resources among components, establishing
new interfaces, and so on. This is more reminiscent of a computational market,
as envisaged by Wellman (1994), than of the classical subroutine hierarchies, and
would offer a useful additional level of abstraction in system design.

7.3 Learning and bounded optimality

In addition to combinatorial optimization of the structureand temporal behaviour of
an agent, we can also use learning methods to improve the design:

• Thecontentof an agent’s knowledge base can of course be improved by induc-
tive learning. Russell and Subramanian (1995) show that approximately bounded
optimal designs can be guaranteed with high probability if each component is
learned in such a way that its output quality is close to optimal among all compo-
nents of a given execution time. Results from statistical learning theory, partic-
ularly in the agnostic learning and empirical risk minimization models (Kearns
et al, 1992; Vapnik, 2000), can provide learning methods—such as support vec-
tor machines—with the required properties. The key additional step is to analyze
the way in which slight imperfection in each component carries through to slight
imperfection in the whole agent.

• Reinforcement learningcan be used to learn value information such as utility
functions, and several kinds ofε-δ convergence guarantees have been established
for such algorithms. Applied in the right way to the metalevel decision problem,
a reinforcement learning process can be shown to converge toa bounded-optimal
configuration of the overall agent.

• Compilationmethods such as explanation-based learning can be used to trans-
form an agent’s representations to allow faster decision making. Several agent
architectures including SOAR (Laird et al, 1986) use compilation to speed up all
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forms of problem solving. Some nontrivial results on convergence have been ob-
tained by Tadepalli (1991), based on the observation that after a given amount
of experience, novel problems for which no solution has beenstored should be
encountered only infrequently.

Presumably, an agent architecture can incorporate all these learning mechanisms.
One of the issues to be faced by bounded optimality research is how to prove conver-
gence results when several adaptation and optimization mechanisms are operating
simultaneously.

7.4 Offline and online mechanisms

One can distinguish betweenofflineandonlinemechanisms for constructing bounded-
optimal agents. An offline construction mechanism is not itself part of the agent and
is not the subject of bounded optimality constraints. LetC be an offline mechanism
designed for a class of environmentsE. Then a typical theorem will say thatC oper-
ates in a specific environmentE ∈ E and returns an agent design that is ABO (say)
for E—that is, an environment-specific agent.

In the online case, the mechanismC is considered part of the agent. Then a typical
theorem will say that the agent is ABO for allE ∈ E. If the performance measure
used is indifferent to the transient cost of the adaptation or optimization mechanism,
the two types of theorems are essentially the same. On the other hand, if the cost
cannot be ignored—for example, if an agent that learns quickly is to be preferred to
an agent that reaches the same level of performance but learns more slowly—then
the analysis becomes more difficult. It may become necessaryto define asymptotic
equivalence for “experience efficiency” in order to obtain robust results, as is done
in computational learning theory.

It is worth noting that one can easily prove the value of “lifelong learning” in
the ABO framework. An agent that devotes a constant fractionof its computational
resources to learning-while-doing cannot do worse, in the ABO sense, than an agent
that ceases learning after some point. If some improvement is still possible, the
lifelong learning agent will always be preferred.

7.4.1 Fixed and variable computation costs

Another dimension of design space emerges when one considers the computational
cost of the “variable part” of the agent design. The design problem is simplified
considerably when the cost is fixed. Consider again the task of metalevel reinforce-
ment learning, and to make things concrete let the metaleveldecision be made by a
Q function mapping from computational state and action to value. Suppose further
that the Q function is to be represented by a neural net. If thetopology of the neural
net is fixed, then all Q functions in the space have the same execution time. Conse-
quently, the optimality criterion used by the standard Q-learning process coincides



Rationality and Intelligence 17

with bounded optimality, and the equilibrium reached will be a bounded-optimal
configuration.1 On the other hand, if the topology of the network is subject toal-
teration as the design space is explored, then the executiontime of the different
Q-functions varies. In this case, the standard Q-learning process will not necessarily
converge to a bounded-optimal configuration; typically, itwill tend to build larger
and larger (and therefore more and more computationally expensive) networks to
obtain a more accurate approximation to the true Q-function. A different adaptation
mechanism must be found that takes into account the passage of time and its effect
on utility.

Whatever the solution to this problem turns out to be, the important point is that
the notion of bounded optimality helps to distinguish adaptation mechanisms that
will result in good performance from those that will not. Adaptation mechanisms
derived from calculative rationality will fail in the more realistic setting where an
agent cannot afford to aim for perfection.

7.5 Looking further ahead

The discussion so far has been limited to fairly sedate formsof agent architecture
in which the scope for adaptation is circumscribed to particular functional aspects
such as metalevel Q functions. However, an agent must in general deal with an
environment that is far more complex than itself and that exhibits variation over
time at all levels of granularity. Limits on the size of the agent’s memory may imply
that almost complete revision of the agent’s mental structure is needed to achieve
high performance. For example, songbirds grow their brainssubstantially during the
singing season and shrink them again when the season is over.) Such situations may
engender a rethinking of some of our notions of agent architecture and optimality,
and suggest a view of agent programs as dynamical systems with various amounts of
compiled and uncompiled knowledge and internal processes of inductive learning,
forgetting, and compilation.

If a true science of intelligent agent design is to emerge, itwill have to operate in
the framework of bounded optimality. One general approach—discernible in the ex-
amples given earlier—is to divide up the space of agent designs into “architectural
classes” such that in each class the structural variation issufficiently limited. Then
ABO results can be obtained either by analytical optimization within the class or
by showing that an empirical adaptation process results in an approximately ABO
design. Once this is done, it should be possible to compare architecture classes di-
rectly, perhaps to establish asymptotic dominance of one class over another. For
example, it might be the case that the inclusion of an appropriate “macro-operator
formation” or “greedy metareasoning” capability in a givenarchitecture will result
in an improvement in behaviour in the limit of very complex environments—that is,
one cannot compensate for the exclusion of the capability byincreasing the machine

1 A similar observation was made by Horvitz and Breese (1990) for cases where the object level is
so restricted that the metalevel decision problem can be solved in constant time.
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speed by a constant factor. Moreover, within any particulararchitectural class it is
clear that faster processors and larger memories lead to dominance. A central tool
in such work will be the use of “no-cost” results where, for example, the allocation
of a constant fraction of computational resources to learning or metareasoning can
do no harm to an agent’s ABO prospects.

Getting all these architectural devices to work together smoothly is an important
unsolved problem in AI and must be addressed before we can make progress on
understanding bounded optimality within these more complex architectural classes.
If the notion of “architectural device” can be made sufficiently concrete, then AI
may eventually develop agrammarfor agent designs, describing the devices and
their interrelations. As the grammar develops, so should the accompanying ABO
dominance results.

8 Summary

I have outlined some directions for formally grounded AI research based on bounded
optimality as the desired property of AI systems. This perspective on AI seems to
be a logical consequence of the inevitable philosophical “move” from optimiza-
tion over actions or computations to optimization over programs. I have suggested
that such an approach should allow synergy between theoretical and practical AI re-
search of a kind not afforded by other formal frameworks. In the same vein, I believe
it is a satisfactory formal counterpart of the informal goalof creating intelligence.
In particular, it is entirely consistent with our intuitions about the need for complex
structure in real intelligent agents, the importance of theresource limitations faced
by relatively tiny minds in large worlds, and the operation of evolution as a design
optimization process. One can also argue that bounded optimality research is likely
to satisfy better the needs of those who wish to emulate humanintelligence, because
it takes into account the limitations on computational resources that are presumably
an important factor in the way human minds are structured andin the behaviour that
results.

Bounded optimality and its asymptotic version are, of course, nothing but for-
mally defined properties that one may want systems to satisfy. It is too early to tell
whether ABO will do the same kind of work for AI that asymptotic complexity has
done for theoretical computer science. Creativity in design is still the prerogative
of AI researchers. It may, however be possible to systematize the design process
somewhat and to automate the process of adapting a system to its computational
resources and the demands of the environment. The concept ofbounded optimality
provides a way to make sure the adaptation process is “correct.”

My hope is that with these kinds of investigations, it will eventually be possi-
ble to develop the conceptual and mathematical tools to answer some basic ques-
tions about intelligence. For example,whydo complex intelligent systems (appear
to) have declarative knowledge structures over which they reason explicitly? This
has been a fundamental assumption that distinguishes AI from other disciplines for
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agent design, yet the answer is still unknown. Indeed, Rod Brooks, Hubert Dreyfus,
and others flatly deny the assumption. What is clear is that itwill needsomething
like a theory of bounded optimal agent design to answer this question.

Most of the agent design features that I have discussed here,including the use
of declarative knowledge, have been conceived within the standard methodology of
“first build calculatively rational agents and then speed them up.” Yet one can le-
gitimately doubt that this methodology will enable the AI community to discover
all the design features needed for general intelligence. The reason is that no con-
ceivable computer will ever be remotely close to approximating perfect rationality
for even moderately complex environments. It may well be thecase, therefore, that
agents based on approximations to calculatively rational designs arenot even close
to achieving the level of performance that is potentially achievable given the un-
derlying computational resources. For this reason, I believe it is imperative not to
dismiss ideas for agent designs that do not seem at first glance to fit into the “classi-
cal” calculatively rational framework.
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